
Bringing the HPC Reconstruction Algorithms to

Big Data Platforms

Nikolay Malitsky

August 17, 2016

New York Scientific Data Summit:

Data-Driven Discovery

Outline

 Spark as an integrated platform for the Big Data and Big

Computing applications

 Spark In-Situ Data Access Approach

 Ptychographic Application

 Spark-Based Distributed Deep Learning Solvers

 SHARP-SPARK Project

 Summary

Closing a Gap between Big Data and Big Computing

Ecosystems*:

Leaders:

Big Data Big Computing

Spark MPI

Motivation: New Frontiers

Big Bang

*G. Fox at al. HPC-ABDC High Performance Computing Enhanced Apache Big Data Stack, CCGrid, 2015

Three Directions

 Spark Model + MPI-oriented extension

 MPI Model + Spark-oriented extension

 New Model

topic of this talk

Spark ecosystem and proposed extensions for
experimental facilities

HPC Beamline Applications

Data-Information-Knowledge Discovery Path

MPI-oriented extension

Receiver (s)

X-Ray

Detector

Composite

Connector (s)

Heterogeneous Data Layer

Spark Core

1. Big

Volume + Variety

2. HPC

Computing

3. Big

Velocity

DATA LAYER

Database vs HDF5 models

RDB

The key data model concepts:

• Group - a collection of objects

(including groups)

• Dataset - a multidimensional array of

data elements with attributes and other

metadata

• Datatype - a description of a specific

class of data element

• Attribute - a named data value

associated with a group, dataset, or

named datatype

HDF5

Present version: single file oriented

Array-Oriented Model:

• SciDB, MonetDB, etc.

Column Family Model:

• Bigtable, Cassandra, etc.

Document-Oriented Model:

• MongoDB, CouchDB, etc.

Graph Model:

• Neo4j, etc.

No SQL

Large-Scale HDF5-Oriented Development

Exascale Fast-Forward I/0 and Storage Stack*

Time: 2012-2014

Team: Intel, The HDF Group, EMC, Cray

Intel, The HDF Group, EMC, and Cray. FF-Storage Final Report, June 2014

VOL Plugins

HDF5 Virtual Object Layer

Spark-based

Proposal
Spark

Connector
Spark API

DB HDF5 files

Spark In-Situ Data Access Approach

Heterogeneous Data Layer

 Text files (plain, JSON, CSV)

 Hadoop InputFormat with arbitrary

key and value

 Hadoop SequenceFile with

arbitrary key and value

 Object files with the RDD values

previously saved using

the Java/Python serialization

 HDF5 (research projects*)

Supported file formats: SQL and NoSQL Databases:

 Java Database Connectivity (JDBC)

 HBase

 Cassandra

 MongoDB

 Neo4j

Composite Connector

SQL SQL SQLMachine Learning Graph Processing

Resilient Distributed Dataset (RDD) and Dataset API

Scientific Apps

J. Liu et al. H5Spark: Bridging the I/O Gap between Spark and Scientific Data Formats on HPC Systems, CUG, 2016

PTYCHOGRAPHIC APPLICATION

Ptychography

Ptychography is one of the essential image reconstruction techniques used

in light source facilities. This method consists of measuring multiple

diffraction patterns by scanning a finite illumination (also called the probe)

on an extended specimen (the object).

S. Marchesini et al. SHARP: a distributed, GPU-based

ptychographiv solver, LBNL-1003977, January, 2016

Ptychography Algorithm (in math)

Object and probe updates from the minimization of the cost function2:

Iteration loop based on the difference map1:

Projection operators associated with the modulus and overlap constraints:

(2) P. Thibault et al. Probe retrieval in ptychographic coherent diffractive imaging, Ultramicroscopy, 109, 2009

Ptychography Approach (in pictures*)

Sample space Detector space

FFT

FFT-1

S. Marchesini, Fast Scalabale methods for ptychographic imaging, SHARP workshop, LBNL, Oct 8, 2014

propagate

back

replace

magnitudes

split frames

SHARP GPU-Based Solver and NSLS-II Application

Probe Object

Functions Time, s

256 frames 512 frames

Modulus & overlap

projections

0.06 0.12

Probe update 0.025 0.05

Object update 0.03 0.06

SHARP-NSLS2

Multi-GPU Approach
ALS Streaming Pipeline1

NSLS-II Spark-based SciDriver2

(1) S. Marchesini et al. SHARP: a distributed, GPU-based ptychographic solver, LBNL-1003977, 2016

(2) N. Malitsky and N. D’Imperio, SciDriver: Driving Beamline Streams with HPC Applications, BNL LDRD Proposal, 2016

SPARK-BASED DISTRIBUTED DEEP

LEARNING SOLVERS

Deep Learning Approach – 1 of 2

Deep learning is an active area of machine learning, achieving a state-of-the-art

performance in multiple application domains, ranging from visual object recognition to

reinforcement learning. The major category of methods is based on multi-layer (deep)

architectures using the convolution neural network model.

A brief (and incomplete) history of the convolution

neural network model:

K. Yager (CFN) and D. Yu (CSI), Deep Learning

for Analysis of Materials Science Data, BNL

• D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular

interactions, and functional architecture in the cat’s visual

cortex, “Journal of Physiology, vol. 160, 1962

• K. Fukushima, “Neocognitron: A self-organizing neural

network model for a mechanism of pattern recognition

unaffected by shift in position, “ Biological Cybernetics,

vol. 36, 1980

• Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-

based learning applied to document recognition, “Proc. of

the IEEE, vol. 86, 1998

Deep Learning Approach – 2 of 2

 TensorFlow, Google:
M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems, Preliminary White Paper, November 2015

https://www.tensorflow.org/

Open source: Nov 2015, Distributed version: April 2016

 DistBelief, Google:
J. Dean et al. Large Scale Distributed Deep Networks, NIPS 2012

 Caffe, UC Berkeley :
Y. Jia et al., Caffe: Convolution Architecture for Fast Feature Embedding,

ACM International Conference on Multimedia, 2014

http://caffe.berkeleyvision.org/

Model Parallelism Data Parallelism

SparkNet*

P. Moritz, R. Nishihara, I. Stoica, and M. Jordan. SparkNet: Training Deep Networks in Spark, ICLR, 2016

URL: https://github.com/amplab/SparkNet

Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael Jordan. AMPLab, UC Berkeley

API: Scala

var nets = trainData.foreachPartition(data => {

var net = Net (…)

net.setTrainingData(data)

net })

var weights = initialWeights (…)

for (i <- 1 to 1000){

var broadcastWeights = broadcast(weights)

nets.map(net => net.setWeights(broadcastWeights.value))

weights = nets.map (net => {

net.train (50)

net.getWeights() }).mean()

}

RDDs

from Workers to Driver

Engine Wrapper: Scala/Java/C++

CaffeOnSpark*

URL:

Andy Feng, Jun Shi, and Mridul Jain. Yahoo Big ML Team

API: Python/Scala

Engine Wrapper: Scala/Java/C++

https://github.com/yahoo/CaffeOnSpark

A. Feng, J. Shi, and Mridul Jain. CaffeOnSpark: Deep Learning on Spark Cluster, Spark Summit, June 2016

 Ethernet/TCP

 InfiniBand/RDMA

 GPU or CPU

Inter-Worker Interface (C++):

TensorSpark*

URL:

Christopher Nguyen, Chris Smith, Ushnish De, Vu Pham, and Nanda Kishore. Arimo

API: Python

Engine Wrapper: Python/C++

C. Nguyen et al. Distributed TensorFlow on Spark: Scaling Google’s Deep Learning Library, Spark Summit, February 2016

https://github.com/adatao/tensorspark

define a worker function that calls the TensorFlow wrapper

def train_partition(partition):

return TensorSparkWorker(…).train_partition(partition)

access the Spark context

sc = pyspark.SparkContext(…)

load data on distributed workers and cache them in memory

training_rdd = sc.textFile(…).cache()

start the Tornado-based parameter server

param_server = ParameterServer(…)

param_server.start()

start a training loop

for i in range(num_epochs):

run the train_partition function on distributed workers

training_rdd.mapPartitions (train_partition).collect()

Fragment of the Driver script

PySpark*
1

3

2

https://cwiki.apache.org/confluence/display/SPARK/PySpark+Internals

Spark

Context

PySpark

Context

Py4J

…

Python/C++

…

…

[cloudpickle]

Spark

Worker

Socket [cPickle]

Spark

Worker

Pipe

Local FS

Socket

Local

Cluster

21

3

SHARP-SPARK

SHARP-SPARK def wf(args):

comm = Communicator.createCommunicator(args['rank'], args[‘size’])

1. allocate buffers used in the peer-to-peer communication

imageSize = 2*1000000

comm.allocate(imageSize*4)

2. connect to the address server and

exchange the RDMA addresses

comm.connect(args['addr'])

define a local array (e.g. image)

a = np.zeros(imageSize, dtype=np.float32)

a[imageSize-1] = 1.0

3. sum peers’ arrays for several iterations

t1 = datetime.now()

for i in range(0, 10):

comm.allSum(a)

t2 = datetime.now()

prepare and return the benchmark results

out = {

'a' : a[imageSize-1],

'time' : (t2-t1),

}

comm.release()

return outApproach Time, s

MPI Allreduce based on

MVAPICH2

0.013

SHARP-SPARK based on

the CaffeOnSpark library

0.016

Benchmark results on 4 nodes

Worker’s function of the benchmark application

Summary

 Outlined Spark as an integrated platform for the Big Data

and Big Computing applications at experimental facilities

 Presented the SHARP-SPARK application highlighting

the MPI-oriented development of the Spark computational

model

Acknowledgement

SHARP Team, CAMERA, LBNL: H. Krishnan, S. Marchesini,

T. Perciano, J. Sethian, D. Shapiro

CaffeOnSpark Team, Yahoo: A. Feng, J. Shi, M. Jain

HXN Group, NSLS-II, BNL: X. Huang

Control Group, NSLS-II, BNL: M. Cowan, L. Flaks, A. Heroux,

K. Lauer, R. Petkus

Computational Science Lab, CSI, BNL: N. D’ Imperio, D. Zhihua

Information Technology Division, BNL: R. Perez

